3.563 \(\int \frac{\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=82 \[ -\frac{b \sec (c+d x)}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}-\frac{a \tanh ^{-1}\left (\frac{b \cos (c+d x)-a \sin (c+d x)}{\sqrt{a^2+b^2}}\right )}{d \left (a^2+b^2\right )^{3/2}} \]

[Out]

-((a*ArcTanh[(b*Cos[c + d*x] - a*Sin[c + d*x])/Sqrt[a^2 + b^2]])/((a^2 + b^2)^(3/2)*d)) - (b*Sec[c + d*x])/((a
^2 + b^2)*d*(a + b*Tan[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0733768, antiderivative size = 105, normalized size of antiderivative = 1.28, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {3512, 731, 725, 206} \[ -\frac{b \sec (c+d x)}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}-\frac{a \sec (c+d x) \tanh ^{-1}\left (\frac{b-a \tan (c+d x)}{\sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}\right )}{d \left (a^2+b^2\right )^{3/2} \sqrt{\sec ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Tan[c + d*x])^2,x]

[Out]

-((a*ArcTanh[(b - a*Tan[c + d*x])/(Sqrt[a^2 + b^2]*Sqrt[Sec[c + d*x]^2])]*Sec[c + d*x])/((a^2 + b^2)^(3/2)*d*S
qrt[Sec[c + d*x]^2])) - (b*Sec[c + d*x])/((a^2 + b^2)*d*(a + b*Tan[c + d*x]))

Rule 3512

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(d^(2
*IntPart[m/2])*(d*Sec[e + f*x])^(2*FracPart[m/2]))/(b*f*(Sec[e + f*x]^2)^FracPart[m/2]), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rule 731

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)*(a + c*x^2)^(p
 + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d)/(c*d^2 + a*e^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x]
 /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 3, 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx &=\frac{\sec (c+d x) \operatorname{Subst}\left (\int \frac{1}{(a+x)^2 \sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{b \sec (c+d x)}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))}+\frac{(a \sec (c+d x)) \operatorname{Subst}\left (\int \frac{1}{(a+x) \sqrt{1+\frac{x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b \left (a^2+b^2\right ) d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{b \sec (c+d x)}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))}-\frac{(a \sec (c+d x)) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a^2}{b^2}-x^2} \, dx,x,\frac{1-\frac{a \tan (c+d x)}{b}}{\sqrt{\sec ^2(c+d x)}}\right )}{b \left (a^2+b^2\right ) d \sqrt{\sec ^2(c+d x)}}\\ &=-\frac{a \tanh ^{-1}\left (\frac{b \left (1-\frac{a \tan (c+d x)}{b}\right )}{\sqrt{a^2+b^2} \sqrt{\sec ^2(c+d x)}}\right ) \sec (c+d x)}{\left (a^2+b^2\right )^{3/2} d \sqrt{\sec ^2(c+d x)}}-\frac{b \sec (c+d x)}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.356037, size = 78, normalized size = 0.95 \[ \frac{\frac{2 a \tanh ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )-b}{\sqrt{a^2+b^2}}\right )}{\left (a^2+b^2\right )^{3/2}}-\frac{b \sec (c+d x)}{\left (a^2+b^2\right ) (a+b \tan (c+d x))}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Tan[c + d*x])^2,x]

[Out]

((2*a*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(3/2) - (b*Sec[c + d*x])/((a^2 + b^2)*(a
 + b*Tan[c + d*x])))/d

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 118, normalized size = 1.4 \begin{align*}{\frac{1}{d} \left ( -2\,{\frac{1}{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\,\tan \left ( 1/2\,dx+c/2 \right ) b-a} \left ( -{\frac{{b}^{2}\tan \left ( 1/2\,dx+c/2 \right ) }{ \left ({a}^{2}+{b}^{2} \right ) a}}-{\frac{b}{{a}^{2}+{b}^{2}}} \right ) }+2\,{\frac{a}{ \left ({a}^{2}+{b}^{2} \right ) ^{3/2}}{\it Artanh} \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) -2\,b}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*tan(d*x+c))^2,x)

[Out]

1/d*(-2*(-b^2/(a^2+b^2)/a*tan(1/2*d*x+1/2*c)-b/(a^2+b^2))/(tan(1/2*d*x+1/2*c)^2*a-2*tan(1/2*d*x+1/2*c)*b-a)+2*
a/(a^2+b^2)^(3/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.81042, size = 502, normalized size = 6.12 \begin{align*} -\frac{2 \, a^{2} b + 2 \, b^{3} -{\left (a^{2} \cos \left (d x + c\right ) + a b \sin \left (d x + c\right )\right )} \sqrt{a^{2} + b^{2}} \log \left (-\frac{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} + 2 \, \sqrt{a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right )}{2 \,{\left ({\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} d \cos \left (d x + c\right ) +{\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/2*(2*a^2*b + 2*b^3 - (a^2*cos(d*x + c) + a*b*sin(d*x + c))*sqrt(a^2 + b^2)*log(-(2*a*b*cos(d*x + c)*sin(d*x
 + c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 + 2*sqrt(a^2 + b^2)*(b*cos(d*x + c) - a*sin(d*x + c)))/(2*a*b
*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)))/((a^5 + 2*a^3*b^2 + a*b^4)*d*cos(d*x + c) + (
a^4*b + 2*a^2*b^3 + b^5)*d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (a + b \tan{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)/(a + b*tan(c + d*x))**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.43339, size = 186, normalized size = 2.27 \begin{align*} -\frac{\frac{a \log \left (\frac{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{{\left (a^{2} + b^{2}\right )}^{\frac{3}{2}}} - \frac{2 \,{\left (b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a b\right )}}{{\left (a^{3} + a b^{2}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

-(a*log(abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b + 2*sqrt(a^
2 + b^2)))/(a^2 + b^2)^(3/2) - 2*(b^2*tan(1/2*d*x + 1/2*c) + a*b)/((a^3 + a*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - 2
*b*tan(1/2*d*x + 1/2*c) - a)))/d